MNLP Unsupervised Human Preference Learning
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CONVAI How Can We Efficiently Personalize Language Model Outputs?
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* Preference Agents capture individual user preferences without relying on explicit human feedback or labeled data
* Small, locally trainable agents guide large LLMs, enabling cost-effective personalization on limited user data
 Qutputs generated by homogenous model pairs show superior alignment compared to heterogenous model pairs
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"Write an email to ) | ) "Hey Eliza, "Dear Elizabeth
Elizabeth <...>" o Hey Ellzaoeth, <...> <.>"

M;

'lggz ;; :Tati Eﬂ 1. Elizabeth is a
close friend, use
her nickname -
Liza.
2. Limit to 2-3
sentences.
NL Rules 3. No signature . o

p p

Results

Preference
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Opportunity: People have personal preferences that can be —
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Our Solution: LLM Personalization via lexicalized rules: Yol 652 88 68 4 63 65 @8 62 604 64 520
* Train a small, local model on personalization rules.
* Use itto guide foundational models in tasks, aligning with

user preferences.

Table 2: Win Rates of Llama3 8B M, combined with various M, evaluated by GPT40 and human evaluation.
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Learning Preference Rules is easier New Yorker: Naive vs Rule QLoRA Finetuning

Empirical Examples

Write an email to Sylvia informing her that the NG
contract is complete and ready for legal review, and
that it should be available by tomorrow morning.
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Training Steps

Dear Sylvia,

Thank you for your email regarding the status
of the NG Energy contract. I'm pleased to let
you know that the contract is now complete
and ready for an attorney review. [...]

Best regards,

<Your Name Here>
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Personalization Test:
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Write an email to Sylvia informing her that the NG

contract is complete and ready for legal review, and
that it should be available by tomorrow morning.
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Tested each agent on all
senders in a permutation
analysis
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* Agents perform best on
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Email guidelines:

e Start with talking about NG Energy Contract
e Don’t use an introductory name

e Use direct tone, concise sentences
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The NG Energy contract is finished. | need a lawyer to
review it. It will be ready in the morning.
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